Главная


НАСТОЯЩИЙ ИИ МОЖНО СОЗДАТЬ, РЕШИВ ТРИ ОСНОВНЫЕ ПРОБЛЕМЫ

На проходившей в прошлом месяце в Лондоне конференции по вопросам глубинного машинного обучения несколько раз затрагивалась одна тема: важность понимания того, чем на самом деле мы занимаемся. В то время как такие компании, как Google, продолжают заявлять, что все мы живем в «первом веке ИИ», когда технологии машинного обучения лишь начинают открывать для себя новые сферы деятельности (например, распознавание речи и изображений), те, кто действительно стоит на передовых линиях исследований ИИ, стремятся подчеркнуть, что нам предстоит решить еще множество проблем перед тем, как наступит настоящий век ИИ. Даже если мы уже имеем цифровых помощников, которые могут говорить как компьютеры в научно-фантастических фильмах, это совсем не означает, что мы серьезно приблизились к созданию настоящего искусственного интеллекта.

В конечном итоге все проблемы, стоящие на пути создания настоящего ИИ, заключены в следующем: в том объеме информации, который необходимо будет в них вложить; в нашей неспособности создать ИИ, который мог бы одинаково хорошо справляться сразу с несколькими задачами; ну и на самом деле мы понятия не имеем, как подобные системы должны работать на самом деле. Технологии машинного обучения в 2016 году уже способны творить чудесные вещи, однако эти вещи порой бывает сложно объяснить даже для самих создателей. Не говоря уже о том, каких денег все это стоит. Разберем более подробно те сложности, с которыми приходится сталкиваться инженерам ИИ в настоящее время.

Сперва информация, затем – ИИ

Все мы прекрасно понимаем, что ИИ необходимо иметь доступ к информации для изучения окружающего мира, однако мы не совсем понимаем, какой именно объем информации необходим. По мнению Нила Лоуренса, профессора кафедры машинного обучения Шеффилдского университета и члена команды разработок технологий ИИ компании Amazon, этим системам потребуется в сотни и тысячи раз больше информации, чем человеку, для того чтобы научиться понимать мироустройство и распознавать те или иные объекты.

Специализация – это тупик. ИИ должен уметь работать в многозадачном режиме

Еще одной ключевой проблемой, стоящей на пути разработки действительно глубинных моделей машинного обучения, является тот факт, что все наши нынешние системы ИИ, по сути дела, очень глупы. По мнению Райа Хадселл, научной сотрудницы DeepMind компании Google, эти системы на самом деле уже сейчас можно научить выполнять задачи по распознаванию котов, научить играть и при этом сделать их весьма эффективными в выполнении этих задач. Но «на настоящий момент в мире нет ни одной полноценной нейронной сети и методов, которые позволили бы натренировать ее на распознавание изображений, игры в Space Invaders и созерцание музыки». В свою очередь, именно нейронные сети являются ключевой базой для создания систем глубинного обучения машин.

ИИ можно будет назвать ИИ,
если мы сможем показать, как он работает

Еще одной сложнейшей преградой является понимание того, как искусственный интеллект будет приходить к своим выводам при решении задач. Нейронные сети, как правило, непроницаемы для наблюдателя. Несмотря на то, что мы знаем, как они собраны и как по ним проходит информация, те решения, которые они принимают, обычно остаются вне объяснений.

Автор: Николай Хижняк 13 октября 2016
"Настоящий ИИ можно создать, решив три основные проблемы"
Читать подробнее в первисточнике